728x90 첨도1 [빅데이터분석기사 실기][작업형1] 왜도와 첨도, np.log1p() 왜도 및 첨도는 데이터 세트의 형태 및 분포에 대한 정보를 제공하는 통계값입니다. 왜도(Skewness): 왜도는 분포의 비대칭성을 측정합니다. 양의 왜도는 분포의 꼬리가 오른쪽으로 치우쳐 있음을 의미하고 음의 왜도는 꼬리가 왼쪽으로 치우쳐 있음을 의미합니다. 왜도 값 0은 완벽하게 대칭적인 분포를 나타냅니다. 첨도(Kurtosis): 첨도는 분포의 정점 또는 평탄도를 측정합니다. 정규 분포와 비교하여 데이터에 두꺼운 꼬리(leptokurtic) 또는 가벼운 꼬리(platykurtic)가 있는지 여부를 알려줍니다. 첨도 값 3은 정규 분포를 나타냅니다. 양의 첨도는 꼬리가 두꺼울수록 더 뾰족한 분포를 나타내고, 음의 첨도는 꼬리가 더 가늘고 평평한 분포를 나타냅니다. 데이터 세트의 로그를 취할 때 왜도 .. 2023. 5. 24. 이전 1 다음 728x90